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LETTER TO THE EDITOR 
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Lorenzo Sadunl. and Jan SegertS 
t Department of Mathematics, 253-37, California Institute of Technology, Pasadena, CA 
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$ Department of Physics, 114-36, California Institute of Technology, Pasadena, CA 91 125, 
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Received 18 October 1988 

Abstract. We analyse families of quantum quadrupole Hamiltonians H = Z,, QnpJuJp for 
half-odd-integer spin, and calculate the second Chern numbers of the energy levels. Each 
non-zero integer occurs only a finite number of times. The adiabatic time evolution, the 
non-Abelian generalisation of Berry’s phase, is different for each system, in contrast to 
Berry’s example. The j = $ and j = f cases previously analysed are the only ones with 
self-dual curvatures and SO(5) symmetry. 

Geometrical and topological techniques applied to the study of time-dependent quan- 
tum Hamiltonians have recently generated much interest [l]. Berry’s examples of a 
family of Hamiltonians of the form B .  J display the diversity of phenomena. The 
degenerate, or non-Abelian, case has received much attention [2]. In the class of 
time-reversal-invariant fermionic Hamiltonians, which have Kramers degeneracy [3], 
the quadrupole systems Zap QapJaJp for half-odd-integer spin are in many ways the 
analogues of Berry’s examples [4]. The relevant topological invariants are the first 
Chern number over a 2-sphere for Berry’s examples, and the second Chern number 
over a 4-sphere for the quadrupoles. Chern numbers are defined for energy levels 
which have a fixed degree of degeneracy for all Hamiltonians in the family. The Chern 
numbers for quadrupoles with j s f are defined and have been previously computed [4]. 

In this paper, we will calculate the second Chern numbers for all quadrupole 
systems with half-odd-integer spin. In fact, every topological invariant of two- 
dimensional complex vector bundles over S4 is a function of the second Chern number, 
i.e. these bundles are classified by the second Chern number up to topological 
equivalence. It will be shown in [5] that the second Chern numbers are indeed well 
defined for all half-odd-integer j .  

An energy level can be specified by the eigenvalue of a particular Hamiltonian. It 
is convenient to take the quadrupole Hamiltonian Qo = J :  -$J2  which commutes with 
J 3 .  The energy level can then be labelled by ( j ,  mT), where j is the total angular 
momentum and m: is the eigenvalue of J : .  We shall refer to this Hamiltonian as the 
north pole, and to minus this Hamilitonian as the south pole. The level can alternately 
be labelled by ( j ,  mB), where m’, is the eigenvalue of J :  at the south pole, with 
mB = j ++ - mT. 

Second Chern numbers over the 4-sphere will be calculated as the integral of the 
4-form o = -Tr(fl A fl)/87r2, where fl is the curvature of the connection on the eigen- 
state bundle given by adiabatic time evolution [ 6 ] .  As a first step we will reduce the 
integral of a general rotationally invariant 4-form over the 4-sphere of unit quadrupoles 
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to a one-dimensional integral. We will then evaluate this integral for the Chern form, 
and determine the second Chern numbers to be $(j+4)(2mT-j- i ) .  It follows that 
every non-zero integer appears as a Chern number a finite number of times, and zero 
appears an infinite number of times. All integers other than i 1  and *2k, k = 1 , 2 , 3 , .  . . , 
appear at least twice. 

In Berry’s example [l] two systems with the same Chern number have gauge- 
equivalent connections, because the connection with the required SU(2) symmetry is 
unique [7]. However, no two quadrupole systems have gauge-equivalent connections. 
That is, two systems with the same Chern number can be distinguished by their adiabatic 
time evolution properties. In the special case j = i the connections have (anti) self-dual 
curvatures, and also have an SO(5) symmetry [4], properties which also hold trivially 
for j = 4. However, neither of these properties ever occurs for j > i. These statements 
will be proven in [ 5 ] .  

We now begin by analysing the space of unit (normalised) quadrupoles, and the 
structure of the SO(3) orbits. There are exactly two two-dimensional orbits, and a 
one-parameter family of three-dimensional orbits. We express an integral of a rota- 
tionally invariant 4-form over the space of unit quadrupoles as an integral over this 
family. 

A quadrupole Q is a 3 x 3 real symmetric matrix with zero trace. The space of 
quadrupoles is a five-dimensional real vector space, with an inner product (Q, 0’) = 
$ Tr( QQ’). A unit quadrupole statisfies 3 Tr QZ = 1. The space of unit quadrupoles is 
a 4-sphere. 

The rotation group SO(3) acts on the space of quadrupoles by Q + RQR-’, preserv- 
ing the inner product. The space of diagonal quadypolg matrices is two-dimensional, 
spanned by Qo = diag( -4, -4,;) and QTI2 = diag(&, -44, 0). Every symmetric matrix 
can be diagonalised by an orthogonal transformation, so every unit quadrupole is 
rotationally related to a diagonal unit quadrupole, i.e. a matrix of the form 

Qe =~0~(6)Q~+sin(6)Q,~~=fdiag[cos(6+2r/3), c o s ( 6 - 2 ~ / 3 ) ,  cos(6)l 

for some value of 0 S 6 < 27~ .  
In fact, every unit quadrupole is rotationally related to exactly one Qe with 

0 6 6 S ~ / 3 ,  as we now show. The rotation exp[*$ri(L, + Lz + L3)] cyclically permutes 
the entries of Qs, so Qe is rotationally related to Q(8+2T/3). Now the rotation exp(irL3) 
permutes the first two entries of Qe, so Qe is rotationally related to Q-e. Thus any 
unit quadrupole is rotationally related to some Qe, with 0 s  6 6 r / 3 .  The 6 in this 
interval is unique, because Det( Qe) = & cos(36) is a one-to-one function on this interval. 
The south pole -Qo is rotationally related to QT/3,  since Det(-Qo) = Det(Qw,3). 

The orbits of Qo and QTI3 are two dimensional, while all the other orbits are 
three-dimensional. This is checked by noting that Qo and QTI3 each commute with 
exactly one generator of the rotation group, while QB for 0 < 6 < r / 3  does not commute 
with any of the generators. The subgroup V c  SO(3) which leaves Qe, 0 < 6 < r / 3 ,  
invariant consists of four elements; V = { 1, exp( rL,), exp( r L 2 ,  ), exp( rL3)}. The 
assignment R + RQeR is thus four-to-one. Alternatively, we consider the double cover 
SU(2) of SO(3). Every Qe with 0 < 6 < ~ / 3  is left invariant by the eight-element 
subgroup F = { i l ,  f i u l ,  *iff2, fir3}, which maps onto V under SU(2) + SO(3). 

Denote by X the 4-sphere with the two-dimensional orbits removed. This is now 
an open four-dimensional manifold. The integral of a 4-form over S4 is equal to the 
integral over X .  There is a one-to-one correspondence between Y x I and X ,  where 
Y is the space SU(2)/ F, and I is the interval 0 < 6 < ~ 1 3 ,  We put coordinates on an 
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A rotationally invariant 4-form on X is constant on the orbits, and is uniquely 
determined by its value on one point of each orbit, e.g. on the set of points I =  
( y o  = 0,O < 8 < 7r/3). Every rotationally invariant 4-form p, expressed in local 
coordinates as 

P =f(Ya, e )  d e  A dY, A dY2 A dY3 (1) 

is thus specified by the function f(y, = 0, e ) .  (Note that in these coordinates f is not 
constant along the orbits, because dy, ~ d y ~ ~ d y ,  is not the invariant measure on the 
orbit (see e.g. [8], exercise III.4.d, p 178).) 

Integrating first over the orbits, we reduce the integral of a rotationally invariant 
4-form p (expressed in local coordinates {ye ,  e }  as in (1)) over S4 to a one-dimensional 
integral over a path connecting the two two-dimensional orbits: 

In fact, this equation is valid for an arbitrary path parametrised by 8 that connects 
the two orbits. This follows from the invariance of the left-hand side under diff erentiable 
maps S4+ S4 (of degree 1) which commute with rotations. Any path is the image of 
the standard path under some such map. 

The normalisation constant 2 ~ ’  is the integral over any three-dimensional orbit of 
the invariant 3-form that equals dy, ~ d y ~ ~ d y ,  at the point y, = O .  SU(2) can be 
embedded as the unit sphere in R4, since every SU(2) matrix can be uniquely written 
as zol -iz,a,, with zi+Z, z’, = 1. We can lift the coordinates {y,} to coordinates on 
a neighbourhood of the identity in SU(2) by {y,} + exp( -iy,a,/2) = 1 - iiy,a, + o(y2 ) .  
This has to lowest order the R4 coordinates zo = 1, z, =iy,. So we find that dy, A dy, A 

dy3=877, where 77 is the three-dimensional area element on the unit sphere in R4. 
Thus the integral over SU(2) is eight times the volume of the 3-sphere, or 1 6 ~ ’ .  Since 
SU(2) is an eightfold cover of each orbit, the integral over the orbit on X is one-eighth 
of this total, namely 277’. 

We now calculate the Chern numbers. We use the fact that the curvature f2 is 
rotationally invariant, as is the second Chern form w 2  = -Tr(R A SZ)/Sv’, which allows 
us to apply (2) to reduce the four-dimensional integral to a one-dimensional integral. 
The spectral projection P(y,,  e) ,  and its derivative d P  are given by 

p(y, ,e)  = exp(y,K,)P, exP(-Y,K,) 

dP(0, e ) = [ & ,  P,]dy,+P’d@ 

where the prime denotes a derivative with respect to 8. Here K ,  = -U,, in the 
appropriate representation of SU(2). From now on, all quantities are evaluated on 
the arc y, = 0, 8, and P = P(0,  e), etc. The curvature SZ = P d P  A d P P  [9, 101 evaluated 
on the arc takes the form 
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Defining V, = PKaP, the second Chern 4-form w2 = -Tr(R A R)/87r2 equals 

V a P V & P - [ V l ,  V 2 ] P V ; P - [ V 2 ,  V 3 ] P V ’ , P - [ V 3 ,  V , ] P V ; P  

a 11’ - - -1 [ Tr( VaV, - 2 [  V I ,  V,] V3 
8 7r2 

multiplied by dB A dy, A dy, A dy,. Now using (2), and the fact that Q71,3 is rotationally 
related to -Qo, we find 

where the rotationally invariant function g is given by 

11 V a V a - 2 [ V l ,  V,]V3 

with g( Qo) = -4 m;, and g( -Qo) = -;mi. This yields 
C, = :( m+- mi) = mT( j +;) -:( j + & I 2  

as shown in figure 1. 
The set of Chern numbers is in one-to-one correspondence with the set n(2k+  l ) ,  

with n E Z and k E Z,, the non-negative integers. This is easily seen pictorially, by 
following the lines in figure 1, and lets us calculate the number of times each integer 
1 appears. Zero appears an infinite number of times. Assume 1 is positive, since 1 and 
-1  appear with the same frequency. 1 appears once for every distinct odd factor of 1. 
For example, 90 = 1 x 2 x 3 x 3 x 5; its odd factors are 1,3, 5 ,  9, 15, 45, so 90 appears 
six times. Clearly every number appears at least once, since every number has 1 as a 
factor. The number 1 and the powers of 2 appear exactly once. Odd primes larger 
than 1 appear exactly twice, as do products of odd primes with powers of two. All 
other numbers appear at least three times. 

We thank Joseph Avron, Barry Simon and Peter Weichman. The research of JS was 
partially supported by NSF grant DMS-8801918. 
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Figure 1. Chern numbers as a function of j .  The numbers along each line are multiples 
of an odd integer. Each number appears as many times as it has distinct positive odd factors. 
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